use std::ops::Deref; use serde::Serialize; use crate::expressions::expression::Expression; use crate::expressions::helpers::{and, binary, not, or}; use crate::expressions::operator::BinaryOperator; use crate::routing::options::SimplifyOptions; use crate::routing::response::Operation; #[derive(Debug, PartialEq, Serialize)] #[serde(rename_all = "SCREAMING_SNAKE_CASE")] #[allow(clippy::enum_variant_names)] pub enum Law { EliminationOfImplication, DeMorgansLaws, AbsorptionLaw, AssociativeLaw, DistributionLaw, DoubleNegationElimination, CommutativeLaw, } #[macro_export] macro_rules! absorption_law_opposites { ($left:expr, $right:expr, $operations:expr, $op:pat, $func:expr, $ignore_case:expr) => { match ($left.as_ref(), $right.as_ref()) { (_, Expression::Binary { left: right_left, operator: $op, right: right_right }) => { evaluate_equals_or_opposites($left.as_ref(), right_left, right_right, $func, $ignore_case, $operations).unwrap_or( $func($left.absorption_law($operations, $ignore_case), $right.absorption_law($operations, $ignore_case)) ) } (Expression::Binary { left: left_left, operator: $op, right: left_right }, _) => { evaluate_equals_or_opposites($right.as_ref(), left_left, left_right, $func, $ignore_case, $operations).unwrap_or( $func($left.absorption_law($operations, $ignore_case), $right.absorption_law($operations, $ignore_case)) ) } (left, right) => $func(left.absorption_law($operations, $ignore_case), right.absorption_law($operations, $ignore_case)) } }; } #[macro_export] macro_rules! distribution_law_atomic_vs_binary { ($left:expr, $right:expr, $operations:expr, $op:pat, $func1:expr, $func2:expr) => { match ($left.as_ref(), $right.as_ref()) { (Expression::Atomic(_), Expression::Binary { left: right_left, operator: $op, right: right_right }) => { let right_left = right_left.distribution_law($operations); let right_right = right_right.distribution_law($operations); $func1($func2($left.clone(), right_left), $func2($left.clone(), right_right)) } (Expression::Binary { left: left_left, operator: $op, right: left_right }, Expression::Atomic(_)) => { let left_left = left_left.distribution_law($operations); let left_right = left_right.distribution_law($operations); $func1($func2(left_left, $right.clone()), $func2(left_right, $right.clone())) } (left, right) => $func2(left.distribution_law($operations), right.distribution_law($operations)) } }; } #[derive(Debug, Default)] pub struct Options { pub ignore_case: bool, } impl From for Options { fn from(options: SimplifyOptions) -> Self { Self { ignore_case: options.ignore_case } } } impl Expression { // TODO better track of operations pub fn simplify(&self, options: Options) -> (Self, Vec) { let mut operations: Vec = vec![]; let expression = self.elimination_of_implication(&mut operations) .de_morgans_laws(&mut operations) .absorption_law(&mut operations, options.ignore_case) // .associative_law(&mut operations) .distribution_law(&mut operations) .double_negation_elimination(&mut operations); // .commutative_law(&mut operations); (expression, operations) } /// Eliminate the implication operator from the expression. /// This is done by replacing `a ➔ b` with `¬a ⋁ b`. fn elimination_of_implication(&self, operations: &mut Vec) -> Self { match self { Expression::Not(expr) => { not(expr.elimination_of_implication(operations)) } Expression::Binary { left, operator, right } => { let l_result = left.elimination_of_implication(operations); let r_result = right.elimination_of_implication(operations); let before = binary(l_result.clone(), *operator, r_result.clone()); if let BinaryOperator::Implication = *operator { let after = or(not(l_result.clone()), r_result.clone()); if let Some(operation) = Operation::new(&before, &after, Law::EliminationOfImplication) { operations.push(operation); } after } else { before } } atomic @ Expression::Atomic(_) => atomic.clone(), } } /// Eliminate double negations from the expression. /// This is done by replacing `¬¬a` with `a`. /// This function is recursive and will continue to eliminate double negations until none are left. fn double_negation_elimination(&self, operations: &mut Vec) -> Self { let result = match self { Expression::Not(expr) => { let before = not(expr.double_negation_elimination(operations)); if let Expression::Not(inner) = expr.deref() { let after = inner.double_negation_elimination(operations); dbg!(before.to_string(), after.to_string()); if let Some(operation) = Operation::new(&before, &after, Law::DoubleNegationElimination) { operations.push(operation); } after } else { before } } Expression::Binary { left, operator, right } => { let left = left.double_negation_elimination(operations); let right = right.double_negation_elimination(operations); binary(left.clone(), *operator, right.clone()) } atomic @ Expression::Atomic(_) => atomic.clone(), }; // if let Some(operation) = Operation::new(self, &result, Law::DoubleNegationElimination) { // operations.push(operation); // } result } fn de_morgans_laws(&self, operations: &mut Vec) -> Self { let result = match self { Expression::Not(expr) => { match expr.deref() { Expression::Binary { left, operator: operator @ (BinaryOperator::And | BinaryOperator::Or), right } => { let left = not(left.de_morgans_laws(operations)); let right = not(right.de_morgans_laws(operations)); if let BinaryOperator::And = operator { or(left, right) } else { and(left, right) }.de_morgans_laws(operations) } _ => not(expr.de_morgans_laws(operations)), } } Expression::Binary { left, operator, right } => { let left = left.de_morgans_laws(operations); let right = right.de_morgans_laws(operations); binary(left, *operator, right) } atomic @ Expression::Atomic(_) => atomic.clone(), }; if let Some(operation) = Operation::new(self, &result, Law::DeMorgansLaws) { operations.push(operation); } result } fn absorption_law(&self, operations: &mut Vec, ignore_case: bool) -> Self { let result = match self { Expression::Binary { left, operator: BinaryOperator::And | BinaryOperator::Or, right } if Expression::eq(left, right, ignore_case) => { left.absorption_law(operations, ignore_case) } Expression::Binary { left, operator: BinaryOperator::And, right } => { absorption_law_opposites!(left, right, operations, BinaryOperator::Or, and, ignore_case) } Expression::Binary { left, operator: BinaryOperator::Or, right } => { absorption_law_opposites!(left, right, operations, BinaryOperator::And, or, ignore_case) } Expression::Binary { left, operator, right } => binary( left.absorption_law(operations, ignore_case), *operator, right.absorption_law(operations, ignore_case), ), Expression::Not(expr) => not(expr.absorption_law(operations, ignore_case)), atomic => atomic.clone(), }; if let Some(operation) = Operation::new(self, &result, Law::AbsorptionLaw) { operations.push(operation); } result } fn associative_law(&self, operations: &mut Vec) -> Self { todo!("? | Associative law: (a ⋀ b) ⋀ c == a ⋀ (b ⋀ c) and (a ⋁ b) ⋁ c == a ⋁ (b ⋁ c)") } fn distribution_law(&self, operations: &mut Vec) -> Self { let result = match self { Expression::Binary { left, operator: BinaryOperator::And, right } => { distribution_law_atomic_vs_binary!(left, right, operations, BinaryOperator::Or, or, and) } Expression::Binary { left, operator: BinaryOperator::Or, right } => { distribution_law_atomic_vs_binary!(left, right, operations, BinaryOperator::And, and, or) } Expression::Binary { left, operator, right } => binary( left.distribution_law(operations), *operator, right.distribution_law(operations), ), Expression::Not(expr) => not(expr.distribution_law(operations)), atomic => atomic.clone(), }; if let Some(operation) = Operation::new(self, &result, Law::DistributionLaw) { operations.push(operation); } result } fn commutative_law(&self, operations: &mut Vec) -> Self { todo!("? | Order of operands does not matter in AND and OR operations.") } } fn evaluate_equals_or_opposites Expression>( this: &Expression, left: &Expression, right: &Expression, ret_func: F, ignore_case: bool, operations: &mut Vec, ) -> Option { if this.eq(left, ignore_case) || this.eq(right, ignore_case) { return Some(this.absorption_law(operations, ignore_case)); } else if left.is_atomic() && right.is_atomic() && this.opposite_eq(left, ignore_case) { if this.opposite_eq(left, ignore_case) { return Some(ret_func(right.absorption_law(operations, ignore_case), this.absorption_law(operations, ignore_case))); } else if this.opposite_eq(right, ignore_case) { return Some(ret_func(left.absorption_law(operations, ignore_case), this.absorption_law(operations, ignore_case))); } } None } #[cfg(test)] mod tests { use crate::expressions::helpers::{and, atomic, implies, not, or}; use crate::expressions::simplify::Law; #[test] fn test_simplify() { let (expression, operations) = implies(atomic("a"), atomic("b")).simplify(Default::default()); assert_eq!(expression, or(not(atomic("a")), atomic("b"))); assert_eq!(operations.len(), 1); assert_eq!(operations[0].law, Law::EliminationOfImplication); } #[test] fn test_simplify_a_and_a() { let (expression, operations) = and(atomic("a"), atomic("a")).simplify(Default::default()); assert_eq!(expression, atomic("a")); assert_eq!(operations.len(), 1); assert_eq!(operations[0].law, Law::AbsorptionLaw); } #[test] fn test_implication_and_de_morgans() { let expression = implies(and(not(atomic("a")), atomic("b")), atomic("c")).simplify(Default::default()).0; assert_eq!(expression, or(or(atomic("a"), not(atomic("b"))), atomic("c"))); } #[test] fn test_elimination_of_implication() { let mut operations = vec![]; let expression = implies(atomic("a"), atomic("b")).elimination_of_implication(&mut operations); assert_eq!(expression, or(not(atomic("a")), atomic("b"))); assert_eq!(operations.len(), 1); assert_eq!(operations[0].law, Law::EliminationOfImplication); assert_eq!(operations[0].before, "a ➔ b"); assert_eq!(operations[0].after, "¬a ⋁ b"); } #[test] fn test_elimination_of_implication_nested() { let mut operations = vec![]; let expression = implies(atomic("a"), implies(atomic("b"), atomic("c"))).elimination_of_implication(&mut operations); assert_eq!(expression, or(not(atomic("a")), or(not(atomic("b")), atomic("c")))); assert_eq!(operations.len(), 2); assert_eq!(operations[0].law, Law::EliminationOfImplication); assert_eq!(operations[0].before, "b ➔ c"); assert_eq!(operations[0].after, "¬b ⋁ c"); assert_eq!(operations[1].law, Law::EliminationOfImplication); assert_eq!(operations[1].before, "a ➔ ¬b ⋁ c"); assert_eq!(operations[1].after, "¬a ⋁ ¬b ⋁ c"); } #[test] fn test_elimination_of_implication_none() { let mut operations = vec![]; let expression = and(atomic("a"), atomic("b")).elimination_of_implication(&mut operations); assert_eq!(expression, and(atomic("a"), atomic("b"))); assert_eq!(operations.len(), 0); } #[test] fn test_elimination_of_implication_nested_none() { let mut operations = vec![]; let expression = or(atomic("a"), and(atomic("b"), atomic("c"))).elimination_of_implication(&mut operations); assert_eq!(expression, or(atomic("a"), and(atomic("b"), atomic("c")))); assert_eq!(operations.len(), 0); } #[test] fn test_double_negation_elimination() { let mut operations = vec![]; let expression = not(not(atomic("a"))).double_negation_elimination(&mut operations); assert_eq!(expression, atomic("a")); assert_eq!(operations.len(), 1); assert_eq!(operations[0].law, Law::DoubleNegationElimination); assert_eq!(operations[0].before, "¬¬a"); assert_eq!(operations[0].after, "a"); } #[test] fn test_triple_negation_elimination() { let mut operations = vec![]; let expression = not(not(not(atomic("a")))).double_negation_elimination(&mut operations); assert_eq!(expression, not(atomic("a"))); assert_eq!(operations.len(), 1); assert_eq!(operations[0].law, Law::DoubleNegationElimination); assert_eq!(operations[0].before, "¬¬¬a"); assert_eq!(operations[0].after, "¬a"); } #[test] fn test_five_negation_elimination() { let mut operations = vec![]; let expression = not(not(not(not(not(atomic("a")))))).double_negation_elimination(&mut operations); assert_eq!(expression, not(atomic("a"))); assert_eq!(operations.len(), 2); assert_eq!(operations[0].law, Law::DoubleNegationElimination); assert_eq!(operations[0].before, "¬¬¬a"); assert_eq!(operations[0].after, "¬a"); assert_eq!(operations[1].law, Law::DoubleNegationElimination); assert_eq!(operations[1].before, "¬¬¬¬¬a"); assert_eq!(operations[1].after, "¬¬¬a"); } #[test] fn test_no_negation_elimination() { let mut operations = vec![]; let expression = atomic("a").double_negation_elimination(&mut operations); assert_eq!(expression, atomic("a")); } #[test] fn test_double_negation_nested_elimination() { let mut operations = vec![]; let expression = and(or(not(not(atomic("a"))), atomic("b")), not(not(atomic("c")))).double_negation_elimination(&mut operations); assert_eq!(expression, and(or(atomic("a"), atomic("b")), atomic("c"))); assert_eq!(operations.len(), 4); assert!(operations.into_iter().map(|operation| operation.law).all(|law| law == Law::DoubleNegationElimination)); } #[test] fn test_de_morgans_laws_and() { let mut operations = vec![]; let expression = not(and(atomic("a"), atomic("b"))).de_morgans_laws(&mut operations); assert_eq!(expression, or(not(atomic("a")), not(atomic("b")))); assert_eq!(operations.len(), 1); assert_eq!(operations[0].law, Law::DeMorgansLaws); assert_eq!(operations[0].before, "¬(a ⋀ b)"); assert_eq!(operations[0].after, "¬a ⋁ ¬b"); } #[test] fn test_de_morgans_laws_or() { let mut operations = vec![]; let expression = not(or(atomic("a"), atomic("b"))).de_morgans_laws(&mut operations); assert_eq!(expression, and(not(atomic("a")), not(atomic("b")))); assert_eq!(operations.len(), 1); assert_eq!(operations[0].law, Law::DeMorgansLaws); assert_eq!(operations[0].before, "¬((a ⋁ b))"); assert_eq!(operations[0].after, "¬a ⋀ ¬b"); } #[test] fn test_de_morgans_laws_nested_or() { let mut operations = vec![]; let expression = not(or(and(atomic("a"), atomic("b")), atomic("c"))).de_morgans_laws(&mut operations); // ¬(a ⋀ b ⋁ c) assert_eq!(expression, and(or(not(atomic("a")), not(atomic("b"))), not(atomic("c")))); // ¬(a ⋀ b) ⋀ ¬c == (¬a ⋁ ¬b) ⋀ ¬c assert_eq!(operations.len(), 3); assert!(operations.into_iter().map(|operation| operation.law).all(|law| law == Law::DeMorgansLaws)); } #[test] fn test_de_morgans_laws_nested_and() { let mut operations = vec![]; let expression = not(and(or(atomic("a"), atomic("b")), atomic("c"))).de_morgans_laws(&mut operations); // ¬(a ⋁ b ⋀ c) assert_eq!(expression, or(and(not(atomic("a")), not(atomic("b"))), not(atomic("c")))); // ¬(a ⋁ b) ⋀ ¬c == (¬a ⋀ ¬b) ⋁ ¬c } #[test] fn test_de_morgans_laws_nested_and_or() { let mut operations = vec![]; let expression = not(and(or(atomic("a"), atomic("b")), or(atomic("c"), atomic("d")))).de_morgans_laws(&mut operations); // ¬(a ⋁ b ⋀ c ⋁ d) assert_eq!(expression, or(and(not(atomic("a")), not(atomic("b"))), and(not(atomic("c")), not(atomic("d"))))); // ¬(a ⋁ b) ⋀ ¬(c ⋁ d) == (¬a ⋀ ¬b) ⋁ (¬c ⋀ ¬d) } #[test] fn test_absorption_law_and() { let mut operations = vec![]; let expression = and(atomic("a"), or(atomic("a"), atomic("b"))).absorption_law(&mut operations, false); assert_eq!(expression, atomic("a")); } #[test] fn test_absorption_law_or() { let mut operations = vec![]; let expression = or(atomic("a"), and(atomic("a"), atomic("b"))).absorption_law(&mut operations, false); assert_eq!(expression, atomic("a")); } #[test] fn test_absorption_law_nested_and() { let mut operations = vec![]; let expression = and(atomic("a"), or(atomic("a"), atomic("b"))).absorption_law(&mut operations, Default::default()); assert_eq!(expression, atomic("a")); } // !A & B | A <=> B | A #[test] fn test_absorption_law_not() { let mut operations = vec![]; let expression = or(and(not(atomic("a")), atomic("b")), atomic("a")).absorption_law(&mut operations, Default::default()); assert_eq!(expression, or(atomic("b"), atomic("a"))); } // A & B | !A <=> B | !A #[test] fn test_absorption_law_not_reversed() { let mut operations = vec![]; let expression = or(and(atomic("a"), atomic("b")), not(atomic("a"))).absorption_law(&mut operations, Default::default()); assert_eq!(expression, or(atomic("b"), not(atomic("a")))); } // !A & B | !A <=> !A #[test] fn test_absorption_law_double_not() { let mut operations = vec![]; let expression = or(and(not(atomic("a")), atomic("b")), not(atomic("a"))).absorption_law(&mut operations, Default::default()); assert_eq!(expression, not(atomic("a"))); } #[test] fn test_absorption_law_duplicate_atomic() { let mut operations = vec![]; let expression = and(atomic("A"), atomic("A")); let simplified = expression.absorption_law(&mut operations, Default::default()); assert_eq!(simplified, atomic("A")); assert_eq!(operations.len(), 1); assert_eq!(operations[0].law, Law::AbsorptionLaw); assert_eq!(operations[0].before, "A ⋀ A"); assert_eq!(operations[0].after, "A"); } // (A | B) & !A <=> B & !A #[test] fn test_in_parenthesis() { let mut operations = vec![]; let expression = and(or(atomic("a"), atomic("b")), not(atomic("a"))).absorption_law(&mut operations, Default::default()); assert_eq!(expression, and(atomic("b"), not(atomic("a")))); } #[test] fn test_distributive_law_and() { let mut operations = vec![]; let expression = and(atomic("a"), or(atomic("b"), atomic("c"))).distribution_law(&mut operations); assert_eq!(expression, or(and(atomic("a"), atomic("b")), and(atomic("a"), atomic("c")))); } #[test] fn test_distributive_law_or() { let mut operations = vec![]; let expression = or(atomic("a"), and(atomic("b"), atomic("c"))).distribution_law(&mut operations); assert_eq!(expression, and(or(atomic("a"), atomic("b")), or(atomic("a"), atomic("c")))); } #[test] fn test_distributive_law_nested_not() { let mut operations = vec![]; let expression = and(atomic("a"), not(or(atomic("b"), atomic("c")))).distribution_law(&mut operations); assert_eq!(expression, and(atomic("a"), not(or(atomic("b"), atomic("c"))))) } }